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We present a theoretical model for the compaction of a colloidal sediment under uniaxial mechanical
pressure in the continuous three-dimensional space. The initial system is formed with aggregated particles
dispersed in a fluid, and softly sedimented in a vessel. When a uniform pressure is applied, it evolves irrevers-
ibly through successive creation and destruction of bonds between the particles. The rules governing the bonds
depend on both geometrical constraints and current stresses. Numerical simulations of such systems exhibit
three different scenarios, corresponding, respectively, to the fragile, elastic, and plastic behaviors. In the elastic
regime, where most bonds are permanent, the pressure scales as a power law of the volume fraction of
particles, with a numerical exponent equal to 4.4. In the plastic regime, where many bonds are broken and
many others created, the pressure also scales with volume fraction, but the exponent is much lower, equal to
1.7. These scaling behaviors agree remarkably well with recent experiments realized on the compaction of
systems with aggregated silica particles in the œdometer cell. They also can be explained with simple theo-
retical arguments using a plausible morphology of the resistant paths acting throughout the system. Finally, at
very large applied pressures, all these regimes converge to the random close packing of spheres.
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I. INTRODUCTION

This paper deals with the behavior of disordered net-
works, such as those formed by aggregated colloidal par-
ticles, when they are submitted to a compressive force. From
a fundamental point of view, the question of the compression
of an N-body system takes place in a number of physical
contexts. A classical example is the problem of gas compres-
sion under the uniform pressure. It has been solved for a long
time, after considering the gaseous medium as a disordered
ensemble of molecules in thermal equilibrium. For the ideal
gas, the resistance to collapse comes from the kinetic ener-
gies of the molecules, and this results in very particular laws
for the pressureP versus the gas densityf. Importantly,
these laws depend on the precise way in which the gas is
compressed. For example, Boyle’s law is the elastic behav-
ior: P~f for the isothermal transformation. The control of
energy, instead of control of temperature, leads to different
behaviors, as Poisson’s law:P~fg, with g=1.3–1.7 for the
reversible adiabatic compression. Such power-law behaviors,
as

P ~ f1+1/n, s1d

with the real positive polytropic indexn, are common for
perfect-gas compression. Deviations to these laws appear
when interactions between molecules arise. The two-bodies
attractive intermolecular forces tend to decrease the real
pressure by a quantity proportional tof2. Moreover, the fi-
nite volume of the molecules must manifest at the very large
densities, leading to the Van der Waals equation

P + af2 ~ f/sf* − fd s2d

for the isothermal case, withf* the limit density at the infi-
nite pressure. These considerations are general, and should
hold for any disordered system of particles that interact

through central forces. However, in colloidal systems, par-
ticles often interact through noncentral forces. This is the
case for all colloidal aggregates, in which small particles are
held together by surface forces. Because such forces are non-
central, they may cause the aggregates to retain tenuous or
bushy structures, as in the case for fractal aggregates[1]. All
colloidal pastes, such as ceramic pastes and flocculated
emulsions, are made of such aggregates that form a network
extending throughout the material. It would be highly desir-
able to be able to predict, from the knowledge of interparticle
forces, the response of such networks to an applied strerss.

In this paper, we propose a study of the quasistatic iso-
thermal mechanical compression of an inhomogeneous net-
work of colloidal particles. We consider the case where col-
loidal particles interact through local chemical bonds,
yielding aggregation, and eventually Van der Waals and
screened electrostatic forces. In the chemical engineering
language, this system would be called a paste. Specifically,
the colloid aggregates may be placed in a compression cell,
as in a colloidal ultrafiltration experiment where a semiper-
meable piston expresses the liquid from a paste. Quasistatic-
ity means here that the characteristic compression time is
much larger than the relaxation time of the overall structure.
Within this framework, the compressive yield stress is ex-
pected to be a material property of the colloidal system.

Following the ideas for the granular matter packing[2],
the forces propagate along particular paths of connected par-
ticles, and these paths are responsible for the relevant me-
chanical behavior of the whole system through the local
stress distribution. The local mechanisms involved in the ir-
reversible deformation of the system, are then creation, de-
formation, and breaks of the bonds between the colloidal
particles. The bonds originate from the surfaces of the par-
ticles, and therefore producenoncentral forces, hence the
network resists bending deformations and will not collapse
spontaneously. Therefore, bond-stretching deformations re-
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sult in the elastic response to applied forces, while the irre-
versible events give the plastic response at high deformation
of the network. For the latter, bond creations and breaks are
expected to occur mainly following avalanches of complex
events involving rupture, reordering, and creation, until me-
chanical equilibrium is reached. Even if alternative behaviors
have been proposed[3,4], the power laws for the pressure
versus volume fraction are commonly used in this context
[5].

In Sec. II, we present new modeling of the compaction of
aggregated solid spheres with creation/annihilation of har-
monic springs representing the total interaction between
spheres. In Sec. III, a simple theoretical model is described,
and the various power laws between pressure and volume
fraction, predicted by this model, are drawn. A discussion of
the numerical data and a comparison with the theoretical
model are presented in Sec. IV.

II. NUMERICAL MODEL

The model proposed here is a variant of the discrete ele-
ment method[6] — used for granular materials — in which
each particle is regarded as an individual hard element, and
actual microscopic forces result from pair interactions. We
consider a box of linear dimensionLx3Ly3Lz, the finite
part of the continuous three-dimensional space, and, at the
beginning of each simulation,N spherical particles are dis-
persed into this box under preaggregated forms. The com-
mon radius of the particles isa=1/2,such that 2a defines the
natural unit of length: the values of all lengths will be de-
fined relatively to 2a.

In the current work, we shall take the values:Lx=Ly=11,
and the heightLz in the range 11–200. Thez axis defines the
direction of the external pressure forces. The colloidal par-
ticles are all inside the regionz=0 andH, with H the sedi-
ment height, which is essentially a decreasing function of the
pressure. Along thex and y directions, periodic boundary
conditions are considered.

The common mass of the particles is set to 1, and each
particle is allowed to translate and rotate according to the
laws of classical mechanics.

A. Definition of the pins

At the beginning of each simulation, a series of pins is
randomly computed for each particle. A pin is a particular
point of the surfaceof the sphere, where a bond may be
attached. Only one bond can catch a given pin at the same
time. Hereafter, the numbernt of such pins per sphere will be
fixed to 200, unless duly noticed. This means that it is not
possible to attach more than 200 bonds onto the surface of a
sphere(excluded volume effect). The relevance of the value
given to this number is discussed in Sec. IV B.

The exact locations of the pins are computed following a
Monte Carlo procedure: a point on the surface of a sphere is
chosen randomly; it is accepted as a pin if the direction join-
ing the center of the sphere to this new point makes an angle
larger than a threshold with any other pins of the same
sphere(e.g., 0.2 rad is a correct threshold to obtainnt=200).

The algorithm is repeated until the required number of pins
is obtained. This insures a statistically uniform distribution
of the pins on the surface. All these pins are fixed in a local
frame attached to the particle. Indeed, during the movement
of the particle, this local frame translates and rotates with
respect to the global frame of the box.

B. Initial aggregates

Before applying the pressure, one builds the system by
addingN particles to the box. We use the standard reaction-
limited cluster-cluster aggregation(RCCA) model[1] to gen-
erate randomly aggregates ofNa identical particles. This
model is known to correctly describe experimental floccula-
tion of colloidal particles — such as silica[7], polystyrene
[8], or metallic[9,10] colloids — in the conditions where the
aggregation rate is limited by the time it takes by the clusters
to form a bond.

All the results presented below have been obtained with
Na=16, but work is in progress with other values ofNa rang-
ing from 1 to 32, in order to understand the role of the
eventual preaggregation on the compacted structure. TheN
=16 RCCA aggregates correspond to an ensemble of fractal
aggregates of fractal dimensionDf =2, and a radius of gyra-
tion Rg/2a=2.2 [11].

Once an aggregate is generated, it is inserted randomly at
top of the box, at a height large enough to avoid any overlap
with previous system particles. Whenever the aggregate is
self-overlapping, due to the lateral periodic boundary condi-
tions, single-bonded particles are removed one by one from
this single aggregate until there is no more self-overlap. The
remaining aggregate is then gently settled onto bottom of the
box, or onto existing particles, without deformation of its
structure. Overlaps are strictly forbidden at this stage. With
the use of this algorithm, one adds as many particles as
wished. Generally, the simulations presented hereafter were
made with,500 particles. Within the box of lateral section
11311, this corresponds to an initial volume fraction for the
sedimentf<10−2.

C. Creation and annihilation of the bonds

Bonds are generated if the relative distance between two
free pins belonging to two different spheres is smaller than a
threshold la (see Fig. 1). Such a bond will link the two
spheres by a microscopic massless spring of stiffnessk, and
characteristic lengthlo. The two pins used for the bond can-
not be used again as long as this bond is present.

The spring parametersk and lo define the energy unit
through the relationEo=klo

2/2, which is the energy needed to
compress a spring completely. The simulations presented
here are done for the particular choicela= lo. This means that
no energy is gained or lost by the creation of a bond.

According to the forces acting on the particles, these
springs can contract or stretch from their equilibrum length
lo. Whenever the length of the spring becomes larger than a
thresholdlmax, the bond is destroyed(see Fig. 2), releasing
the microscopic disruptive energyEd=kslmax− lod2/2 into the
fluid. The value of the relative energyEd/Eo is used to char-
acterize the fragility of the system(not to be confused with
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the softness of the system, which is directly connected to the
value ofk). The fragility parameter ranges from 4310−2 to
105 in the simulations presented below.

D. Soft core

The spheres are not considered as hard spheres, but over-
laps are allowed within a shell of widtha/10 according to
prescription discussed in Ref.[12]. This results in a repulsive
central harmonic force proportional to the overlap length.
The stiffness constant is set equal to 10Ed/a2. In fact, the
quantitative results did not depend on the precise value of the
numerical coefficient, if it was chosen within the range
1–30.

E. Application of the external pressure

Several experimental situations have been considered
(e.g., a system in a gradient of pressure, as in a centrifugation
experiment), but here, we will focus only on the application
of a uniform pressure, as in the experiment with a piston in
the œdometer cell. If the current system is entirely inside a
column of vertical extensionf0,Hg, then the external pres-
sure P induces a pressure forcepa2P on any sphere inter-
secting the slices 0,z,a or H−a,z,H. The other
spheres inside the system do not feel directly the pressure.

F. Dynamics

Once all the objects of the system and their applied forces
have been defined, one has to consider the proper rules for
the individual motions. A particle, sayi, is submitted to vari-

ous forces, the sum of which is notedFW i. They can be split
into two sets: the central forces(the pressure force and the
overlapping forces), and the noncentral forces(forces due to
the bonds, which are attached to the surface of the particle).
The latter generate moments, the sum of which isMW i, which
tend to rotate the particles. The equations of motion in the
frame of the box are

m
dvW i

dt
= FW i + lsvW f − vW id,

5

2
ma2dvW i

dt
= MW i +

4

3
a2lsvW f − vW id,

wherevW i andvW i denote the current translational and angular
velocity of particlei, while vW f andvW f are the corresponding
macroscopic velocities of the fluid at the location of particle
i. The coefficientl is the proportionality constant between
the drag force on a particle and its relative translational ve-
locity with respect to the fluid in the Stokes regime.

In principle, one has to deduce the position and orienta-
tion of particle i by the time integration ofvW i and vW i. This
should be done using(e.g.,) the Verlet algorithm with im-
plicit velocity [13], to compute the new position of the par-
ticle at time t+d t, knowing its position at timest and t

−d t, and the local forcesFW i (pressure and spring forces) and
lvW f (drag forces). This would require complete knowledge of
the fluid velocity fieldvW f, which is a considerable task. In-
stead, we will consider that all velocities appear to be small
(quasistatic approximation), therefore neglecting drag forces
and moments. During the time intervald t, small enough for
all the forces to be considered as constant, one has for the
position rWi and orientationui of the particlei

drWi = aFW i , s3d

dui = bMi , s4d

with the coefficientsa=sd td2/2m andb=2a /5a2. In Eq.(4),

the rotation of angledui is around the axisMW i /Mi.
This approximation is based on the fact that, at equilib-

rium (and we are interested by the equilibrium state of the
stressed system), all the velocities vanish, fluid velocity in-
cluded. So, drag forces do not play a relevant role close to
equilibrium in the present situation. More quantitatively, ex-

FIG. 1. A schematic view of two spheres connected by a few
springs. Pins are marked as small gray chips on the surface of each
sphere. Two bonds cannot attach to the same pin, and a given bond
connects two different spheres. It is clear that such a configuration
yields natural resistance to bending: when three or more springs are
attached to the surface of two spheres — as on the figure — no
relative movement of the spheres can be performed without chang-
ing the lengths of at least one spring. It results in bending forces.

FIG. 2. Sketch of the mechanical potential energyE of a bond
vs the separation distancel between the surfaces of two spheres
facing each other. The bond equilibrium length islo. For two
spheres approaching, a bond is created at the distancela (for clarity,
the figure is drawn for the casela. lo, but the simulations presented
in the work are forla= lo). The valueEo of the potential energy for
l =0 defines the unit of energy in the system. Small negative values
of the lengthl are possible, but they correspond to rapidly increas-
ing repulsive forces. For two spheres moving away, the bond is
destroyed at the distancelmax. The valueEd of the potential energy
at this rupture threshold characterizes the fragility of the system.
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pressingl=6pnr f a, with n the kinematic viscosity of the
fluid of volumic massr f, and considering a fluid velocity of
same order of magnitude as particle velocities, quasistatic
condition lvi !Fi writes here:nd t /a2!1. This means that
the characteristic time incrementd t should be much smaller
than the momentum diffusion time over distancea (typically
,10−11s for colloidal particles in the water). We will not
discuss further the definition of time throughd t, but only
consider the algorithm Eqs.(3) and (4) as a convenient way

to determine the iso-static statehFW i =0W ,MW i =0Wji=1,̄ ,N of the
system, after a small increase of the external pressure.

G. Algorithm for evolution to a quasistatic equilibrium

The algorithm for time evolution is as follows: a given
geometry and pressure being given, all the forces and mo-
ments are computed according to the foregoing rules detailed
in Sec. II C–II E. The equations of motion(3) and (4) are
then used successively on all the particles of the system, with
the coefficienta chosen in such a way that the largest trans-
lational movement equalsa/10. So, to optimize the simula-
tion speed, the time is allowed not to run uniformly. After
displacement of all the particles is achieved, the bonds are
updated: some of them are broken apart and other ones ap-
pear, according to the Sec. II C rules. The same applies to the
particles submitted to the external pressure, and to the over-
laps. Once the whole geometry has been updated for one step
time, one performs the loop again at the given constant pres-
sure. The computer realizes as many loops as needed for the
equilibrium be reasonably reached. To achieve this stop, one
checks the displacements of all the particles. When the maxi-
mum and the average value of these displacements are both
smaller than a threshold(namely,a/100) for 20 consecutive
time steps, the simulation stops. Mechanical equilibrium is
then considered achieved, and one increases the pressure.
The full algorithm is then used once again.

III. ORDER OF MAGNITUDE OF THE VARIOUS
PARAMETERS

The correct values of the parameters can be inferred from
estimates of the fundamental quantities used in the model.
Assume that the system is a colloidal dispersion, made of
nanometric particles. The particle diameter may be taken as
2a=6 nm, and the equilibrium length of the spring aslo
=3 nm. The natural pressure unit isPo=klo/pa2

;Eo/pa3slo/2ad. To get Po of order 1 bar, one can choose
for the energy of a completely compressed spring:Eo<4
310−21 J, which corresponds approximately to 1kBT at room
temperature. This will be our choice in the following: the
valuesP/Po will then be understood as effective pressureP
expressed in bars, and the values ofE/Eo as energyE ex-
pressed inkBT units.

During a simulation, neighboring particles will be linked
by several bonds connected to their surfaces. So, the me-
chanical response of the system will result from the proper-
ties of bundles of springs instead of individual bonds. There-
fore, a quantity of interest is the energy needed to separate
two particles linked together by the maximum number of

springs. Putting two spheres into contact, the area of one
sphere, at a distance less thanla from the corresponding area
of the other sphere, ispala. The pins being uniformly dis-
tributed over the surface of the sphere, the number of bonds
linking the two spheres is the product of the total number of
pins per sphere withla/4a. For nt=200 pins per sphere, and
la= lo, one gets ten bonds between the two spheres in contact.
The energy needed to completely separate the two spheres is
then 10Ed in this case. It ranges from 0.04kBT to 105kBT for
the values ofEd investigated. Note also that, if two spheres
are brought into contact, then released, the bundle of springs
is equivalent to a single harmonic spring with local stiffness
Ko=knt la/4a at the equilibrium lengthlo− la/2. A sketch of
the force applied to the spheres versus the distancel separat-
ing their centers is shown in Fig. 3.

The largest forceFmax that two spheres are able to gener-
ate in response to a separating stress, is such that
Fmax/Kolo=ÎEd/Eo− la/2lo for the usual case
Ed/Eo. sla/ lod2 [andFmax/Kolo=Edlo/2la for the fragile case
Ed/Eo, sla/ lod2]. It should be compared to the other charac-
teristic force in the system: the pressure force. The whole
structure is then unable to resist to the pressure if
Fmax,pa2P. This gives an order of magnitude of the largest
pressurePdis

* (disruptive pressure) that the system is able to
support

Pdis
* /Po =

nt

2

la
2a
SÎEd

Eo
−

la
2lo

D . s5d

For P. Pdis
* , the forces generated by the springs cannot bal-

ance the typical forces generated by the external pressure.

FIG. 3. A sketch of the reduced total force between two spheres
initially in contact, versus their separation distancel /2a during trac-
tion from particles in contact. Repulsive forces are counted positive.
In this example, the parametersla/2a= lo/2a=1/2 andlmax/2a=2
have been used. This corresponds to the disruptive parameter
Ed/Eo=9. Whenl is smaller thanlU=2a+ lmax− la (notedU on the
figure), interaction is elastic and harmonic. The equilibrium length
is lE= lo− la/2 and equivalent stiffnessKo. When separation distance
becomes larger thanlU, the system becomes unstable with respect to
traction, as irreversible bond breaking occurs. The case exemplified
here is typical ofla/2, lo, lmax. For the other cases(not consid-
ered in the paper), the two-sphere system is always repulsive(if
lo. lmax) or always attractive(if lo, la/2) regardless the separation
distance.
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The structure of the overall system is then expected to be
completely destroyed until the hard-sphere repulsion forbids
subsequent collapse.

IV. CHECKS

A number of test simulations have been performed in or-
der to verify the relevance of the algorithm for modeling the
deformation of multisphere bodies, with the correct choice of
the dummy parameters.

A. Deformation of simple bodies

The algorithm, as stated in Sec. II G, could be used with
minor changes, to study the elastic response of a multisphere
body, connected bypermanentbonds. In this case, the bonds
are created once and for all at the beginning of the process,
and they cannot be created or broken during the rest of the
simulation.

A quantitative check was perfomed in this sense, on an
ensemble of four particles in contact, arranged in the regular
tetrahedron. The numerical results for its response to the uni-
form pressure, agree quantitatively well with the analytical
result which is easy to derive because of the symmetry of the
problem.

Another, less obvious, test is the response of a column
squeezed between two pistons. In Fig. 4 are two examples of
a cylindrical column with the triangular basis(i.e., formed
initially by the regular vertical arrangement of ensembles of
three particles, organized in equilateral triangles). As ex-
plained above, the bonds in this numerical experiment are
permanent and cannot be created or broken during deforma-
tion, therefore, the response to external force must be purely
elastic. On the first example[Fig. 4(a)], one sees the twisting
and buckling of the structure. Twisting appears first as a re-
sponse to small compression: triangles of particles rotate
with respect to each other in order to decrease the overall
height. When this process is no longer possible — or re-
quires too much mechanical energy — the system buckles. In
Fig. 4(b) the same column is shown after a central particle
was removed. This generates a structural defect, and the sys-

tem prefers to fold down. These two behaviors are indeed
expected for the elastic response, if the forces propagate cor-
rectly throughout the structure.

B. Values of the dummy parameters

Other tests were performed to verify that the quantitative
results are robust with respect to those parameters that are
expected to be irrelevant. An example is given below, in Fig.
5, where simulations were realized with systems ofN=256
or 512 particles, and particles with 200, 300, or 400 pins.
The numerical results show the increase of the volume frac-
tion with pressure.

FIG. 4. Two examples of columns with a triangular basis are shown. The bonds between neighboring particles are created in the initial
structure, and cannot be destroyed or created during deformation.(a) The two left-hand side columns show elastic twisting and buckling.(b)
The two right-hand side columns show the folding of the column when a defect(one central particle is missing) is created in the initial
structure.

FIG. 5. Volume fraction vs pressure, for four different cases
with the common valueEd/Eo=1. The stars areN=256 andnt

=200 pins per particle; crosses forN=256,nt=300; squares forN
=256,nt=400; circles forN=512 andnt=400 pins per particle. All
the data fall on a single curve, which shows that the number of
particles and the number of pins per particle are so large that they
no longer noticeably influence the statistical results. The values for
the disruptive pressuresPdis

* /Po given by Eq. (5) are 25 for nt

=200 and 50 fornt=400.
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Except from the very initial stage(the initial sediments
were different), the regular trend starting at the external pres-
sureP=0.1 is similar for the four cases. One can then con-
clude that the valuesN=256 andnt=200 are large enough to
avoid any spurious dependence of the system size and of the
number of possible bonds per particle. In the following, all
numerical simulations were made withN<500, and nt
=200.

An important remark must be made here: we see in Fig. 5
that the main global features do not depend on the initial
conditions of the compression. This could be remarked in all
the simulations presented below. This point suggests the ex-
istence of general scenarios governing the compressive be-
haviors of such systems. This will be the reason for the ten-
tative outline chosen throughout this paper: to extract global
behavior and propose general scenarios to explain them.

C. Increment of pressure

At this point, it is useful to make the following remark
concerning the exponential increment of pressure. We use the
following prescription: starting from a small valueP1, the
pressure is increased by multiplying it successively by a con-
stant factor. In such a way, the incrementD log P is constant.
The reason for such a choice, is that the larger the pressure,
the weaker the possible compaction of the system. In addi-
tion, this exponential scale is well adapted to detect power-
law behaviors[like Eq. (1) for example]. Such a power law
is apparent in Fig. 5 for pressures in between 0.1 and 2 bars.

The relevance of this choice has been checked using a
linear, instead of exponential, increase of pressure, with vari-
ous pressure steps. The results remain identical regardless of
the increment, provided it is very much smaller than the
pressurePdis

* needed to completely collapse the system. In
the example of Fig. 5, one should consider the increment of
pressure to be much smaller than a fewPo (here, a few bars,
sincePo,1 bar). Applying, for example,P1=100 bars as the
first pressure would lead to a very inhomogeneous system, as
a consequence of the basic irreversibility of the process. This
process could be relevant in some fast experimental com-
pression for which kinetics is expected to play an important
role, but the time should then be handled very precisely in
the numerical model. This is not the aim of the present paper,
mainly devoted to quasistatic transformations.

D. Example

A sketch of the visual aspect of the particle system(the
bonds are not represented), is shown in Fig. 6 for three suc-
cessive pressures. These are projections onto thex-z plane,
so the system appears more dense than it actually is. One can
note that the system remains fairly homogeneous, which is a
well-known result for the œdometer experiments.

V. THEORETICAL MODEL

We propose here a simple theoretical model able to catch
the main behaviors found in our numerical simulations,
which are presented in Sec. VI. It corresponds to an extreme
simplification of the numerical model presented in Sec. II,

FIG. 6. Three pictures(projections) of the same system during
compaction. The value ofEd/Eo is here equal to 4, and the number
of particles isN=500. Volume fractions are, respectively, 0.06,
0.30, and 0.63 from top to bottom. The dashed lines visualize the
initial and actual planes where external pressure is applied. Periodic
boundary conditions are applied on all other sides. The curves at the
right-hand side are the respective density profiles for the three
cases. Except for small statistical fluctuations, the systems are spa-
tially homogeneous.
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and is discussed in the present paper in order to propose
possible analytical forms of the constitutive equations asso-
ciated to the various behaviors. This is essentially a variant
of a model proposed recently by Potanin[14]. It is also di-
rectly inspired by the image of the preferred mechanical
paths transmitting the main forces in granular materials.

A. The system as an ensemble of resistant columns

At the very beginning, the system is made of fractal blobs
of typical sizej,Rg (see Sec. II B.) connected together in a
homogeneous network. Such a structure has clearly been
found experimentally in the formation of a solid gel network
[15]. When pressure is applied, the system rearranges irre-
versibly and the initial fractal blobs decrease in size as a
consequence of local reorganization.

For the response to a stress, percolation is the appropriate
description, since the mechanical resistance to collapse origi-
nates from a few paths made of bound particles, which span
the top to the bottom of the system. These paths are formed
as an assembly of blob backbones. These particular sub-
systems will be called the mechanically resistant columns
(see Fig. 7). Since, for the mechanical response, two parallel
independent columns are equivalent to one with double stiff-
ness, we shall consider the case where there is only one such
resistant column, the actual number of columns[16] being a
numerical factor in the effective stiffness.

B. Stiff behavior

When the pressure is such thatP/Po,1, the system is
approximately elastic, as all relative displacements of par-
ticles remain quite small. For very small pressures, noncen-
tral forces make the system rigid, preventing parts of the
system from buckling[17]. Such a rigidity lasts until the
pressure forces are strong enough to buckle the structure.
Formally:

f = fo, whenP , Po. s6d

In fact, the constraintP, Po is probably not so strict, and
should be read asP/Po,A, with the constantA of order 1.

The important point here is thatA should be independent of
Ed, as bond ruptures are unlikely to occur.

C. Elastic behavior

When displacement of individual particles is allowed, but
bond breaking is unlikely to occur because of the large value
of the disruptive energyEd, the system is a disordered elastic
network. This corresponds to the conditions
1, P/Po,Ed/Eo.

One could derive the response of the system by arguments
based on the presence of resistant columns[18,14]. However,
in this regime, the system is not yet markedly compressed,
and one can expect structural effects due to the initial fractal
morphology of the individual aggregates. This point is taken
into account in the alternative derivation by Brown and Ball
[19] for the homogeneous arrangement of disordered fractal
clusters of finite size. This writes for the overall elastic
modulusKr of the system

Kr ~ fs3+xd/s3−Dfd.

In this relation, the exponentx denotes the mass fractal di-
mension of the backbone of the aggregates of fractal dimen-
sion Df. This leads to the elastic power-law behavior

P ~ fs3+xd/s3−Dfd, s7d

with the numerical estimate of the exponent:s3+xd / s3
−Dfd=4.4±0.3 for the reaction-limited cluster-cluster aggre-
gates, in whichDf =2.1 for the three-dimensional case. The
relation (7) with a similar exponent(with a value 4–5) was
also proposed with slightly different variations[20].

D. Ruptures

At a sufficient high pressure, bonds will start breaking,
and the aggregates will no longer respond as an elastic sys-
tem. Local rearrangements will cause the fractal structure to
vanish rapidly. Since the volume fraction is now significantly
higher than for the initial structure(say, about twice higher,
or more), the initial fractal morphology has disappeared and
one has to deal with a mechanical system equivalent to a
single resistant column: the backbone of the percolation path
spanning from the top to the bottom of the overall system.
The densitye of elastic energy stored in a column ise
=P2/Kr, whereKr coincides with the elastic modulus of the
whole system. This densitye corresponds to the deformation
energy per unit volume.

From a mechanical point of view, only the minimal path
crossing the backbone from top to bottom is relevant, since
the loops renormalize the local stiffness throughout the path.
This minimal path is then a self-avoiding walk. Two behav-
iors are possible.

1. Plastic behavior

The first behavior occurs when the elastic energy is dis-
tributed uniformly along the resistant column of heightH.
Rupture will occur if the applied pressure is larger than the
thresholdPpla

* for which e=wo, with wo the average energy
needed to break up all the bonds linking two neighboring

FIG. 7. A visualization of the mechanically resistant columns in
a two-dimensional system made of eight aggregates of 16 disks.
The aggregates are built one after the other by the general RCCA
algorithm[1]. Once an aggregate is completed, it settles from top to
bottom without deforming. There is just one resistant column(made
of the gray particles) with loops.
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particles of the column[21]. Sincewo<nEd/a3 is indepen-
dent on the volume fractionf, one deduces the threshold:
Ppla

* ~ÎKr.
The formula derived by Kantor and Webman for the ef-

fective stiffness of a disordered column is[18]

Kr =
nka

Nr R'
2 ,

where n is the average number of springs between two
neighboring particles,k is the stiffness of one bond, as dis-

cussed in Sec. II C,a the radius of one particle. At the de-
nominator, Nr is the number of particles involved in the
minimal chain throughout a percolating system. The scaling
Nr ~Hdmin has been proposed with the numerical valuedmin
=1.4 for the three-dimensional space[22]. The distanceR'

was argued to follow a simple power-lawR'~He, with e
=1 for the isotropic chains[14]. This leads to the depen-
dence:

Kr ~ f2e+dmin.

Therefore, one obtains the scaling relation:

Ppla
* ~ fe+dmin /2. s8d

The proportionality constant depends, in particular, on the
value ofEd.

This formula needs an interpretation in terms of the cur-
rent pressureP. This can be done by the following argument
[3]. After a series of breakages, there is a collection of col-
umns with all possible heights between 1 andH. When the
external pressure reaches the thresholdPpla

* sfd correspond-
ing to the actual volume fraction through Eq.(8), then the
resistant column of heightH breaks into two or more frag-
ments, and the volume fractionf increases by the elastic
deformation of the next resistant column. As this process
goes on, the system passes successively through a series of
discrete statesfPpla

* sfd ,fg. Between two consecutive states,
the system evolves to equilibrium, first elastically, then
through plastic deformation. But this transformation is not
recorded, since only the equilibriium states are considered. If
the disordered system is large enough, the statesfPpla

* sfd ,fg
are close to each other, and the behavior

P ~ fe+dmin /2 s9d

is then expected, with the numerical exponente+dmin/2
<1.7 in the three-dimensional space.

2. Fragile behavior

The other behavior that involves column breakup, is that
in which the deformation energy is localized into a small
domain of the resistant chain. Then, the morphology of the

FIG. 8. A double-logarithmic plot of the reduced pressureP/Po

vs the volume fractionf, for various values of the disruptive energy
Ed. Triangles are forEd/Eo=4, circles forEd/Eo=9, and stars for
various values ofEd/Eo ranging from 360 up to 10 000. A dashed
line is used for the smallest values ofEd presented here:Ed/Eo

=0.04, which exhibits discontinuous jump inf from about 10−2 to
0.5 atP/Po<1.25. The latter is an example of fragile behavior(see
text). Full straight lines(corresponding to power-law behaviors) are
the predictions(7) and (9) of the theoretical model.

FIG. 9. The evolution of the breakage rate per particleNb/N (right-hand figure) versus the pressureP/Po, for three samples with
Ed/Eo=9. The scale is linear inNb/N, and logarithmic in pressure and volume fraction. The two horizontal lines visualize the boundaries of
the plastic domain. The bold line is the slope 1.7.
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column does not matter, except in the vicinity of the stressed
domain. The local breakage equation writesPfra

* a3=wo, de-
fining the pressure thresholdPfra

* . Sincewo is independent of
the volume fractionf, one concludes that this also applies to
the pressure threshold. The expected behavior is quite differ-
ent than previously: when pressure reaches the critical value
Pfra

* , the system undergoes a series of breakups as in an
avalanche, until the densityf becomes large enough to resist
through lateral constraints. This will produce a discontinuity
in the curveP versusf at the valueP=Pfra

* . Formally,

P ~ f0 at P = Pfra
* .

E. Complete collapse

The bonds cannot resist the pressure forces whenever the
pressure is larger than the thresholdPdis

* calculated in Eq.(5).
Therefore, beyondPdis

* , the system should be a compact ar-
rangement of hard spheres. Because of the local randomness
of the springs, one can expect the random close-packing
model to be the final structure[23] if the system is able to
overcome arch formation(as occurring in dry granular ma-
terial). We infer

f = f* , when P . Pdis
* ,

with f* <0.64 [24].

VI. NUMERICAL SIMULATIONS

A code was written inFortran90, and numerical simulations
performed on a 2.8 GHz biprocessor workstation. Typically,
20–50 CPU hours are needed for complete compaction of a
system of 500 particles. Expect about one week forN
,1000.

A. Numerical results

The main results of the present work are shown in Fig. 8.
This is a double-logarithmic plot for the external pressure
versus the volume fraction of the particles. Several sets of
data are represented, all of them obtained from numerical
simulations of systems withN<500 particles,nt=200 pins
per particle, andla= lo. Four sets of values ofEd were used,
namely, Ed/Eo=0.04, Ed/Eo=4, Ed/Eo=9, and Ed/Eo
=360–10000. The various behaviors are discussed and ex-
plained in the subsequent sections.

B. Stiff behavior

This behavior is not really important for our purpose, and
it should correspond to the pressure domainP/Po smaller
than a constant independent onEd, as explained in Sec. V B
[see Eq.(6)]. The results plotted in Fig. 8 indicate that the
stiff domain is well represented byP/Po,A, with A.7 for
all values ofEd.

C. Elastic behavior

This behavior can be seen only when the bonds cannot
break so easily, i.e., for the large values of the disruptive
energyEd. In Fig. 8, for Ed/Eo.360 (stars), the power-law
P~f4.4 shows up over one decade in pressure. It corre-
sponds precisely to the formula(7), when 1! P/Po
!Ed/Eo. The remarkable feature of this part of Fig. 8 is that
the detailed constitutive equation(with all its parameters,
and domain of validity) is fairly independent on the relative
disruptive energyEd/Eo, as long as its value is larger than
some threshold(here, larger than,100). This probably
means that, in agreement with the theoretical argument of
Brown and Ball[19], the full equation is essentially a func-
tion of the value of the local stiffnessk of a spring, and of the
morphology of the blobs.

D. Dissipative behaviors

1. Plastic behavior

As explained in Sec. V D, the plastic behavior is charac-
terized by a series of breakages in a whole domain of pres-

FIG. 10. A close view(domain: 0.55,f,0.75) of the final
compaction stages of theP vs f curve in the double-linear plot, for
all the numerical simulations performed in the current work(values
of Ed/Eo ranging from 0.04 to 10000). The vertical solid line cor-
responds tof* =0.64.

FIG. 11. Double-logarthmic plot ofP/Pof1.7 vs f* −f. The
same data and the same symbols as for Fig. 8 are used. The lines of
slope −1/2 could indicate the Van der Waals behavior(10) near the
complete compact structure. The accumulated points in the right-
hand side[close to lnsf* −fd,−0.45] correspond to the small vol-
ume fractions.
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sure. The theoretical feature is Eq.(9), which is precisely
recovered in the numerical data of Fig. 8 as straight lines
with slope 1.7. It is worth remarking that the same power-
law equation fits well the data for different values of the
disruptive energy, with a prefactor that increases withEd.
This suggests a common scenario yielding this behavior, as
the one proposed in Sec. V D 1.

The role of the bond breakups is exemplified in Fig. 9,
where it is seen that the pressure domain where plastic be-
havior occurs corresponds to a strong enhancement of the
breakage rate(here counted asNb, the total number of bonds
broken between a given pressure and the previous equili-
brated pressure).

2. Fragile behavior

For Ed/Eo=0.04, the bonds are so weak that the system
cannot resist any pressure larger than a small threshold. This
is basically a two-state system with no definite intermediate
stable configuration in between the low-density initial state
and the final compact state.

E. Collapse

All the numerical simulations tend to the finite volume
fractionf* <0.64 of the random close-packing model, when
the applied pressure is very high. This is seen in Fig. 10,
which corresponds to the linear plot of all our data for which
a limit value off was detected(the same data as Fig. 8 and
other ones corresponding to various choices for the disrup-
tive energy, the numberN of particles and the numbernt of
pins per particle). Only the domain 0.55,f,0.7 is shown
in order to clearly see the behavior.

The average value of the limit value is found equal to
f* =0.643, which is in close agreement with the value ex-
pected for the random close packing of spheres[25].

This is a remarkable result in the sense that it shows that
presence of bonds between the particles forbids voids larger
than those expected in the random close packing. One can
say that springs here act as a lubricant, leading to a system
definitely different from the dry granular medium at the same
(i.e., here zero) temperature. In the latter system, the pres-
ence of arches and bridges may prevent the system from
reaching the random close-packing state[26].

Close to the compact structure, compression should be
dominated by the excluded volume effects. A tentative for-
mula to describe the approach to the random close-packing
result can be proposed here. Plotting the same data as in Fig.
8, but with the variablessP/Pod /f1.7 versusf* −f, with
f* =0.643, in the double-logarithmic plot, one obtains Fig.
11. This plot exhibits a behavior, close tof* −f=0, that
resembles the Van der Waals equation(2), but in the modi-
fied form:

P/Po ~ f1.7/Îf* − f, s10d

for all the data where the plastic behavior is clear(i.e.,
1,Ed/Eo,100). This formula is just indicative considering
the small number of reliable points involved.

VII. CONCLUSION

The aim of this work was to determine the laws for the
quasistatic compression of dissipative networks, made of ag-
gregated particles that interact through noncentral forces. A
model was constructed, which describes interparticle forces
as breakable harmonic springs attached to the particle sur-
faces. The fundamental parameter of this model is the dis-
ruptive energyEd needed to break one bond.

Numerical simulations of this model show a discrete set
of compressional responses that are independent of initial
conditions. Systems with low disruptive energiesEd respond
with a plastic behavior, where large numbers of bonds are
broken and created. Systems with higher disruptive energies
respond with an elastic behavior, where most bonds are per-
manent. The scalings of pressure versus the volume fraction
of particles in these two regimes can be understood through
some general theoretical arguments. Finally, the numerical
simulations also show that these scenarios converge, at very
large applied pressures, to the random close packing of
spheres.

This work may have practical uses in material sciences,
for the design and the control of materials containing colloi-
dal aggregates, such as ceramic pastes and flocculated emul-
sions. Indeed, the compressional properties of such materials
are known from experiments that apply an osmotic stress,
such as ultrafiltration, centrifugation, dialysis, or drying.
There is strong evidence that the experimental laws are
qualitatively similar to those predicted here. Typical ex-
amples can be found in Ref.[27] for compaction of dry
colloidal silica, and Ref.[20] for polystyrene or colloidal
alumina gels. A quantitative match of these laws would make
it possible to determine the parameters that characterize in-
terparticle forces, principally the bond strengths and the dis-
ruptive energies. Conversely, it is now possible to predict
quantitatively the consequences of changes in interparticle
forces for the mechanical properties of such materials.
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