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Scaling behaviors of colloidal aggregates under uniform pressure
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We present a theoretical model for the compaction of a colloidal sediment under uniaxial mechanical
pressure in the continuous three-dimensional space. The initial system is formed with aggregated particles
dispersed in a fluid, and softly sedimented in a vessel. When a uniform pressure is applied, it evolves irrevers-
ibly through successive creation and destruction of bonds between the particles. The rules governing the bonds
depend on both geometrical constraints and current stresses. Numerical simulations of such systems exhibit
three different scenarios, corresponding, respectively, to the fragile, elastic, and plastic behaviors. In the elastic
regime, where most bonds are permanent, the pressure scales as a power law of the volume fraction of
particles, with a numerical exponent equal to 4.4. In the plastic regime, where many bonds are broken and
many others created, the pressure also scales with volume fraction, but the exponent is much lower, equal to
1.7. These scaling behaviors agree remarkably well with recent experiments realized on the compaction of
systems with aggregated silica particles in the cedometer cell. They also can be explained with simple theo-
retical arguments using a plausible morphology of the resistant paths acting throughout the system. Finally, at
very large applied pressures, all these regimes converge to the random close packing of spheres.
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I. INTRODUCTION through central forces. However, in colloidal systems, par-

Thi deal ith the behavi f disordered tticles often interact through noncentral forces. This is the
IS paper deais wi € behavior of disordered Nelaqe for 41| colloidal aggregates, in which small particles are
works, such as those formed by aggregated colloidal pa

) ) : 'Reld together by surface forces. Because such forces are non-
ticles, when they are submitted to a compressive force. FrO'EentraI, they may cause the aggregates to retain tenuous or

a fundamental point of view, the question of the compressiofy,shy structures, as in the case for fractal aggregajeall

of an N-body system takes place in a number of physicalolioidal pastes, such as ceramic pastes and flocculated
contexts. A classical example is the problem of gas compressmulsions, are made of such aggregates that form a network
sion under the uniform pressure. It has been solved for a longxtending throughout the material. It would be highly desir-
time, after considering the gaseous medium as a disorderegble to be able to predict, from the knowledge of interparticle
ensemble of molecules in thermal equilibrium. For the idealfforces, the response of such networks to an applied strerss.
gas, the resistance to collapse comes from the kinetic ener- In this paper, we propose a study of the quasistatic iso-
gies of the molecules, and this results in very particular lawshermal mechanical compression of an inhomogeneous net-
for the pressureP versus the gas density. Importantly, ~ work of colloidal particles. We consider the case where col-
these laws depend on the precise way in which the gas ilQida! particles interact through local chemical bonds,
compressed. For example, Boyle’s law is the elastic behawielding aggregation, and eventually Van der Waals and
ior: P ¢ for the isothermal transformation. The control of Screened electrostatic forces. In the chemical engineering
energy, instead of control of temperature, leads to differen@nguage, this system would be called a paste. Specifically,

behaviors, as Poisson’s la®:x ¢, with y=1.3—-1.7 for the the_colloid aggregates may be placed in a compression cell,
as in a colloidal ultrafiltration experiment where a semiper-

reversible adiabatic compression. Such power-law behaviors; - N e
as meable piston expresses the liquid from a paste. Quasistatic-
ity means here that the characteristic compression time is

Poc pttih (1)  much larger than the relaxation time of the overall structure.

_ . o Within this framework, the compressive yield stress is ex-
with the real positive polytropic inder, are common for  hacted to be a material property of the colloidal system.
perfec.t—gas compression. Deviations to.these laws appear rollowing the ideas for the granular matter packiij,
when interactions between molecules arise. The two-bodieg,e forces propagate along particular paths of connected par-
attractive intermolecular forces tend to decrease the rezﬁdes’ and these paths are responsible for the relevant me-
pressure by a quantity proportional #. Moreover, the fi-  cpanical behavior of the whole system through the local
nite volume of the molecules must manifest at the very larggress distribution. The local mechanisms involved in the ir-
densities, leading to the Van der Waals equation reversible deformation of the system, are then creation, de-

P+ag? = ¢l(¢ — ¢) ) formation, and breaks of the bonds between the colloidal
particles. The bonds originate from the surfaces of the par-

for the isothermal case, wit" the limit density at the infi- ticles, and therefore produagoncentralforces, hence the
nite pressure. These considerations are general, and shouldtwork resists bending deformations and will not collapse
hold for any disordered system of particles that interactpontaneously. Therefore, bond-stretching deformations re-
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sult in the elastic response to applied forces, while the irreThe algorithm is repeated until the required number of pins
versible events give the plastic response at high deformatiois obtained. This insures a statistically uniform distribution
of the network. For the latter, bond creations and breaks aref the pins on the surface. All these pins are fixed in a local
expected to occur mainly following avalanches of complexframe attached to the particle. Indeed, during the movement
events involving rupture, reordering, and creation, until me-of the particle, this local frame translates and rotates with
chanical equilibrium is reached. Even if alternative behaviorgespect to the global frame of the box.

have been proposei®,4], the power laws for the pressure

versus volume fraction are commonly used in this context B. Initial aggregates

[5]. . .
In Sec. I, we present new modeling of the compaction of Before applying the pressure, one builds the system by

aggregated solid spheres with creation/annihilation of hargddmgN particles to the box. We use the standard reaction-

monic springs representing the total interaction betweerjl'm';{ed clugter-lcluster aggtregaglrmgc,?) n|10delt[_1]| to 9%17
spheres. In Sec. lll, a simple theoretical model is describe'a!€ randomly aggregates by, identical particies. 1his

and the various power laws between pressure and Volun{godel is known to correctly describe experimental floccula-
fraction, predicted by this model, are drawn. A discussion ofon of colloidal particles — such as siligd], polystyrene

the numerical data and a comparison with the theoreticaﬁs]' or mgtallic[9,_10]_cqlloids— in t_he c_onditions where the
model are presented in Sec. IV. aggregation rate is limited by the time it takes by the clusters

to form a bond.
All the results presented below have been obtained with
II. NUMERICAL MODEL N,=16, but work is in progress with other valueshf rang-
] ] . ing from 1 to 32, in order to understand the role of the

The model proposed here is a variant of the discrete elesyentual preaggregation on the compacted structure NThe
ment method6] — used for granular materials — in which - 15 RCCA aggregates correspond to an ensemble of fractal
each par_tlcle is regarded as an |nd|V|dua! h_ard ele_ment, angggregates of fractal dimensi@=2, and a radius of gyra-
actual microscopic forces result from pair interactions. Wejqp, R,/2a=2.2[11].
consider a box of linear dimension XL, XL, the finite Once an aggregate is generated, it is inserted randomly at
part of the continuous three-dimensional space, and, at thg, of the box, at a height large enough to avoid any overlap
beginning of each simulatiotN spherical particles are dis- jth previous system particles. Whenever the aggregate is
persed into this box under preaggregated forms. The COMyelf-overlapping, due to the lateral periodic boundary condi-
mon radius of the particles &=1/2,such that 2 defines the  jons single-bonded particles are removed one by one from
natural unit of length: the values of all lengths will be de- s single aggregate until there is no more self-overlap. The
fined relatively to 2. remaining aggregate is then gently settled onto bottom of the

In the current work, we shall take the valués=L,=11, 5y or onto existing particles, without deformation of its
and the height, in the range 11-200. Theaxis defines the  grycture. Overlaps are strictly forbidden at this stage. With
direction of the external pressure forces. The colloidal parine yse of this algorithm, one adds as many particles as
ticles are all inside the regior=0 andH, with H the sedi- \yished. Generally, the simulations presented hereafter were
ment height, which is essentially a decreasing function of thenage with~500 particles. Within the box of lateral section
pressure. Along the and y directions, periodic boundary 11 11, this corresponds to an initial volume fraction for the
conditions are considered. sedimentp~ 1072

The common mass of the particles is set to 1, and each
particle is allowed to translate and rotate according to the C. Creation and annihilation of the bonds
laws of classical mechanics. '

Bonds are generated if the relative distance between two
free pins belonging to two different spheres is smaller than a
thresholdl, (see Fig. 1 Such a bond will link the two

At the beginning of each simulation, a series of pins isspheres by a microscopic massless spring of stiffkessid
randomly computed for each particle. A pin is a particularcharacteristic length,. The two pins used for the bond can-
point of the surfaceof the sphere, where a bond may be not be used again as long as this bond is present.
attached. Only one bond can catch a given pin at the same The spring parameterk and |, define the energy unit
time. Hereafter, the number of such pins per sphere will be through the relatior,=kI5/2, which is the energy needed to
fixed to 200, unless duly noticed. This means that it is nocompress a spring completely. The simulations presented
possible to attach more than 200 bonds onto the surface offere are done for the particular cholgel,. This means that
sphere(excluded volume effegt The relevance of the value no energy is gained or lost by the creation of a bond.
given to this number is discussed in Sec. IV B. According to the forces acting on the particles, these

The exact locations of the pins are computed following asprings can contract or stretch from their equilibrum length
Monte Carlo procedure: a point on the surface of a sphere is. Whenever the length of the spring becomes larger than a
chosen randomly; it is accepted as a pin if the direction jointhresholdl ., the bond is destroyetsee Fig. 2, releasing
ing the center of the sphere to this new point makes an anglée microscopic disruptive enerdgy=Kk(lma—1,)%/2 into the
larger than a threshold with any other pins of the samdluid. The value of the relative enerdsy/E, is used to char-
sphere(e.g., 0.2 rad is a correct threshold to obtain200). acterize the fragility of the systeigmot to be confused with

A. Definition of the pins
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FIG. 1. A schematic view of two spheres connected by a few
springs. Pins are marked as small gray chips on the surface of each
sphere. Two bonds cannot attach to the same pin, and a given bond E, ’\
connects two different spheres. It is clear that such a configuration :
yields natural resistance to bending: when three or more springs are 0
attached to the surface of two spheres — as on the figure — no
relative movement of the spheres can be performed without chang- FIG. 2. Sketch of the mechanical potential eneEgpf a bond

ing the lengths of at least one spring. It results in bending forces.Vs the separation distandebetween the surfaces of two spheres
facing each other. The bond equilibrium length ljs For two

spheres approaching, a bond is created at the distgiioe clarity,

fhe figure is drawn for the cas$g>|,, but the simulations presented

in the work are foll;=1,). The valuek, of the potential energy for

=0 defines the unit of energy in the system. Small negative values

of the lengthl are possible, but they correspond to rapidly increas-

ing repulsive forces. For two spheres moving away, the bond is

destroyed at the distantg,, The valueky of the potential energy
The spheres are not considered as hard spheres, but ovet-this rupture threshold characterizes the fragility of the system.

laps are allowed within a shell of widta/10 according to

prescription discussed in R¢fL2]. This results in a repulsive 5 do - 4

central harmonic force proportional to the overlap length. —ma&@— =M, + —a’\ (o - @),

The stiffness constant is set equal toEy®?. In fact, the 2 dt 3

quantitative results did not depend on the precise value of thGneres, and &; denote the current translational and angular
numerical coefficient, if it was chosen within the range ye|ocity of particlei, while o; and & are the corresponding
1-30. macroscopic velocities of the fluid at the location of particle
i. The coefficient\ is the proportionality constant between
the drag force on a particle and its relative translational ve-
locity with respect to the fluid in the Stokes regime.

Several experimental situations have been considered In principle, one has to deduce the position and orienta-
(e.g., asystem in a gradient of pressure, as in a centrifugatiaion of particlei by the time integration of; and ;. This
experimeny, but here, we will focus only on the application should be done usinge.g.) the Verlet algorithm with im-
of a uniform pressure, as in the experiment with a piston implicit velocity [13], to compute the new position of the par-
the cedometer cell. If the current system is entirely inside aicle at time t+4Jt, knowing its position at times and t

column' of vertical extensiohO,H], then the external Pres- _ st and the local forceéi (pressure and spring foroeand

sure P induces a pressure forcea’P on any sphere inter- \v; (drag forces This would require complete knowledge of

secting the slices €z<a or H-a<z<H. The other e fiuid velocity fields;, which is a considerable task. In-

spheres inside the system do not feel directly the pressurésiead, we will consider that all velocities appear to be small

(quasistatic approximationtherefore neglecting drag forces

and moments. During the time intervét, small enough for

all the forces to be considered as constant, one has for the
Once all the objects of the system and their applied forcepositionr; and orientations, of the particlei

have been defined, one has to consider the proper rules for

the softness of the system, which is directly connected to th
value ofk). The fragility parameter ranges fromx41072 to
10° in the simulations presented below.

D. Soft core

E. Application of the external pressure

F. Dynamics

the individual motions. A particle, sdyis submitted to vari- o = aF;, (3)
ous forces, the sum of which is noté¢ They can be split
into two sets: the central forcgthe pressure force and the 56, = BM;, (4)

overlapping forces and the noncentral forcgforces due to

the bonds, which are attached to the surface of the particlewith the coefficientsy=(5t)?/2m and 8=2a/5a% In Eq.(4),
The latter generate moments, the sum of whicMjswhich  the rotation of angle5é, is around the axid/;/M;.

tend to rotate the particles. The equations of motion in the This approximation is based on the fact that, at equilib-

frame of the box are rium (and we are interested by the equilibrium state of the
. stressed systemall the velocities vanish, fluid velocity in-
% - S - cluded. So, drag forces do not play a relevant role close to
m —F|+A(Uf U|)| aps . . . . . .
dt equilibrium in the present situation. More quantitatively, ex-

031403-3



R. BOTET AND B. CABANE PHYSICAL REVIEW E70, 031403(2004

pressing\ =6mvp; a, with v the kinematic viscosity of the Fl2aK,
fluid of volumic massp;, and considering a fluid velocity of 2
same order of magnitude as particle velocities, quasistatic
condition \v; <F; writes here:vdt/a?<1. This means that
the characteristic time incremeét should be much smaller
than the momentum diffusion time over distarec@ypically
~10s for colloidal particles in the waterWe will not 0
discuss further the definition of time througft, but only

consider the algorithm Eq¢3) and(4) as a convenient way -1

to determine the iso-static sta{éi:O,Mi:G}i:L...yN of the
system, after a small increase of the external pressure. -2

]

]

. . !
0 1 E 2 y 3
112a

G. Algorithm for evolution to a quasistatic equilibrium
9 q q FIG. 3. A sketch of the reduced total force between two spheres

The algorithm for time evolution is as follows: a given initially in contact, versus their separation distaht2a during trac-
geometry and pressure being given, all the forces and maion from particles in contact. Repulsive forces are counted positive.
ments are computed according to the foregoing rules detaileld this example, the parametelig2a=1,/2a=1/2 andl,,,/2a=2
in Sec. Il C—Il E. The equations of motio8) and (4) are  have been used. This corresponds to the disruptive parameter
then used successively on all the particles of the system, witha/Eo=9. Whenl is smaller tharl;=2a+| 1, (notedU on the
the coefficiente chosen in such a way that the largest trans-figure), interaction is elastic and harmonic. The equilibrium length
lational movement equals/10. So, to optimize the simula- iSle=lo~1a/2 and equivalent stiffneds,. When separation distance
tion speed, the time is allowed not to run uniformly. After becqmes Iargerthdg, the system b(_acomes unstable with respect to
displacement of all the particles is achieved, the bonds argactlgn, as_lrrever5|ble bond breaking occurs. The case exempllfled
updated: some of them are broken apart and other ones ape'® is typical ofla/2<lo<Inay For the other casegot consid-
pear, according to the Sec. Il C rules. The same applies to tI‘EeOI in the papgy the two-sphere system is always repulsiife
particles submitted to the external pressure, and to the ovefe” 'ma OF always attractiveif |, <l./2) regardless the separation
laps. Once the whole geometry has been updated for one stg'ﬁtance'
time, one performs the loop again at the given constant pres-
sure. The computer realizes as many loops as needed for tRerings. Putting two spheres into contact, the area of one
equilibrium be reasonably reached. To achieve this stop, on@here, at a distance less tHafrom the corresponding area
checks the displacements of all the particles. When the maxpf the other sphere, isal,. The pins being uniformly dis-
mum and the average value of these displacements are bdifiputed over the surface of the sphere, the number of bonds
smaller than a thresholghamely,a/100) for 20 consecutive linking the two spheres is the product of the total number of
time steps, the simulation stops. Mechanical equilibrium is?ins per sphere with,/4a. Forn,=200 pins per sphere, and

then considered achieved, and one increases the pressuke: o One gets ten bonds between the two spheres in contact.
The full algorithm is then used once again. The energy needed to completely separate the two spheres is

then 1@, in this case. It ranges from 0.4l to 10kgT for
the values ofg, investigated. Note also that, if two spheres
Iil. ORDER OF MAGNITUDE OF THE VARIOUS are brought into contact, then released, the bundle of springs
PARAMETERS is equivalent to a single harmonic spring with local stiffness

The correct values of the parameters can be inferred frorffo=K la/4a at the equilibrium length,—1,/2. A sketch of
estimates of the fundamental quantities used in the modefl® force applied to the spheres versus the distaseparat-
Assume that the system is a colloidal dispersion, made of'd their centers is shown in Fig. 3.
nanometric particles. The particle diameter may be taken as 1Ne largest forcé,, that two spheres are able to gener-
2a=6 nm, and the equilibrium length of the spring s &€ in response to a separating stress, is such that
=3nm. The natural pressure unit iP,=kl,/ma?  FmadKolo=VEq/E=la/2l,  for  the  usual  case
=E,/ma’(l,/2a). To getP, of order 1 bar, one can choose Ea/ Eo> (la/10)? [andF nad Kolo=Eqglo/ 21, for the fragile case
for the energy of a completely compressed sprifig=4 Ed(E9<(Ia/I0)_2]. It should be compared to the other charac-
X 10_21 ‘], Wh|Ch Corresponds approximate|y thaI at room teristic forC'e N the SyStemZ the pr?ssure force. The WhOle
temperature. This will be our choice in the following: the Structure is then unable to resist to the pressure if
valuesP/ P, will then be understood as effective pressBre Fmax<7a°P. This gives an order of magnitude of the largest
expressed in bars, and the valuessdE, as energyE ex-  PressureP (disruptive pressujethat the system is able to

pressed irkgT units. support

During a simulation, neighboring particles will be linked
by several bonds connected to their surfaces. So, the me- P /P =Q|_a<\/g_|_a> (5)
chanical response of the system will result from the proper- dis™" 0™ 5 0g E, 2,/

ties of bundles of springs instead of individual bonds. There-
fore, a quantity of interest is the energy needed to separateor P> P’;is, the forces generated by the springs cannot bal-
two particles linked together by the maximum number ofance the typical forces generated by the external pressure.
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FIG. 4. Two examples of columns with a triangular basis are shown. The bonds between neighboring particles are created in the initial
structure, and cannot be destroyed or created during deform@djorhe two left-hand side columns show elastic twisting and buckling.
The two right-hand side columns show the folding of the column when a déjeet central particle is missings created in the initial
structure.

The structure of the overall system is then expected to béem prefers to fold down. These two behaviors are indeed
completely destroyed until the hard-sphere repulsion forbidexpected for the elastic response, if the forces propagate cor-
subsequent collapse. rectly throughout the structure.

IV. CHECKS B. Values of the dummy parameters

A rumber o et simuiatos ave been prformed n or O (S were perormed i verty hat e quantiate
der to verify the relevance of the algorithm for modeling the P P

deformation of multisphere bodies, with the correct choice O@xpected to be '”Te'e"a”t- An ex_ample_|s given below, in Fig.
the dummy parameters. 5, where simulations were realized with systemdNef256

or 512 particles, and particles with 200, 300, or 400 pins.
The numerical results show the increase of the volume frac-

A. Deformation of simple bodies tion with pressure.
The algorithm, as stated in Sec. Il G, could be used with
minor changes, to study the elastic response of a multisphere o
body, connected bgermanenbonds. In this case, the bonds 102

are created once and for all at the beginning of the process,
and they cannot be created or broken during the rest of the
simulation.

A quantitative check was perfomed in this sense, on an
ensemble of four particles in contact, arranged in the regular
tetrahedron. The numerical results for its response to the uni- oo
form pressure, agree quantitatively well with the analytical 10" | o .+*+ §
result which is easy to derive because of the symmetry of the Ot W
problem. o

Another, less obvious, test is the response of a column
squeezed between two pistons. In Fig. 4 are two examples of
a cylindrical column with the triangular basise., formed
initially by the regular vertical arrangement of ensembles of 2
three particles, organized in equilateral triangless ex- 10 1072 107 10°
plained above, the bonds in this numerical experiment are
permanent and cannot be created or broken during deforma- ¢
tion, therefore, the response to external force must be purely FIG. 5. Wolume fraction vs pressure, for four different cases

elastic. Or_1 the first examp|€&ig. 4(;1)]_, one sees thg twisting \yith the common valueE,/E,=1. The stars ardl=256 andn,

and buckling of the structure. Twisting appears first as a re= g pins per particle; crosses fii=256, n,=300; squares foN
sponse to small compressi_on: triangles of particles rotatg256,nt:4oo; circles folN=512 andn,=400 pins per particle. Al
with respect to each other in order to decrease the overajhe data fall on a single curve, which shows that the number of
height. When this process is no longer possible — or reparticles and the number of pins per particle are so large that they
quires too much mechanical energy — the system buckles. Ifo longer noticeably influence the statistical results. The values for
Fig. 4b) the same column is shown after a central particlethe disruptive pressureB /P, given by Eq.(5) are 25 forn

was removed. This generates a structural defect, and the sys200 and 50 fon,=400.

&%%WJ
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Except from the very initial stagé&he initial sediments
were differeny, the regular trend starting at the external pres-
sureP=0.1 is similar for the four cases. One can then con-
clude that the valueN=256 andn,=200 are large enough to
avoid any spurious dependence of the system size and of the
number of possible bonds per particle. In the following, all
numerical simulations were made witN~500, and n,
=200.

An important remark must be made here: we see in Fig. 5
that the main global features do not depend on the initial
conditions of the compression. This could be remarked in all
the simulations presented below. This point suggests the ex-
istence of general scenarios governing the compressive be-
haviors of such systems. This will be the reason for the ten-
tative outline chosen throughout this paper: to extract global
behavior and propose general scenarios to explain them.

C. Increment of pressure

At this point, it is useful to make the following remark
concerning the exponential increment of pressure. We use the v T —
following prescription: starting from a small value,, the L 4 0.6
pressure is increased by multiplying it successively by a con-
stant factor. In such a way, the increméntog P is constant.

The reason for such a choice, is that the larger the pressure,
the weaker the possible compaction of the system. In addi-
tion, this exponential scale is well adapted to detect power- - 4 0.2
law behaviorglike Eq. (1) for exampld. Such a power law o
is apparent in Fig. 5 for pressures in between 0.1 and 2 bars.

The relevance of this choice has been checked using a
linear, instead of exponential, increase of pressure, with vari-
ous pressure steps. The results remain identical regardless of
the increment, provided it is very much smaller than the - 4 04
pressureP:;iS needed to completely collapse the system. In I ] p
the example of Fig. 5, one should consider the increment of ‘
pressure to be much smaller than a féyv(here, a few bars, oe
sinceP,~ 1 bar. Applying, for exampleP;=100 bars as the I
first pressure would lead to a very inhomogeneous system, as
a consequence of the basic irreversibility of the process. This | . 4 0.6
process could be relevant in some fast experimental com- | ]
pression for which kinetics is expected to play an important

-

role, but the time should then be handled very precisely in i 104
the numerical model. This is not the aim of the present paper,
mainly devoted to quasistatic transformations. - 4 0.2
D. Example . 1 . 0.0
A sketch of the visual aspect of the particle systéhe =k =2 2 5 H

bonds are not represenjeds shown in Fig. 6 for three suc-
cessive pressures. These are projections onto-thelane,
so the system appears more dense than it actually is. One can

note that the system remains fairly homogeneous, which is a £ 6 Three picturegprojections of the same system during

well-known result for the cedometer experiments. compaction. The value d4/E, is here equal to 4, and the number
of particles isN=500. Volume fractions are, respectively, 0.06,
V. THEORETICAL MODEL 0.30, and 0.63 from top to bottom. The dashed lines visualize the

initial and actual planes where external pressure is applied. Periodic
We propose here a simple theoretical model able to catchoundary conditions are applied on all other sides. The curves at the
the main behaviors found in our numerical simulations,right-hand side are the respective density profiles for the three
which are presented in Sec. VI. It corresponds to an extremeases. Except for small statistical fluctuations, the systems are spa-
simplification of the numerical model presented in Sec. Il tially homogeneous.
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The important point here is th# should be independent of
E4, as bond ruptures are unlikely to occur.

C. Elastic behavior

When displacement of individual particles is allowed, but
bond breaking is unlikely to occur because of the large value
of the disruptive energiz,, the system is a disordered elastic
network.  This  corresponds to the conditions
1<P/P,<E4/E,.

One could derive the response of the system by arguments
o _ _ ~ based on the presence of resistant colufiiBsl4. However,

FIG. _7. Av_lsuallzatlon of the mechqnlcally resistant columns_ Nin this regime, the system is not yet markedly compressed,
a two-dimensional system made of eight aggregates of 16 disksq one can expect structural effects due to the initial fractal
The aggregates are built one after the other by the general RCC‘rAhorphology of the individual aggregates. This point is taken
algorithm[1]. Once an aggregate is completed, it settles from top Yinto account in the alternative derivation by Brown and Ball
bottom without deforming. There is just one resistant colymade [19] for the homogeneous arrangement of disordered fractal
of the gray particleswith loops. clusters of finite size. This writes for the overall elastic

. . ) moduluskK, of the system
and is discussed in the present paper in order to propose

possible analytical forms of the constitutive equations asso- K, o p@IEDy),
ciated to the various behaviors. This is essentially a varian
of a model proposed recently by Potaifit¥]. It is also di-
rectly inspired by the image of the preferred mechanical
paths transmitting the main forces in granular materials.

Itn this relation, the exponent denotes the mass fractal di-
fnension of the backbone of the aggregates of fractal dimen-
sion D;. This leads to the elastic power-law behavior

P o ¢(3+X)/(3—Df), (7)

A. The system as an ensemble of resistant columns with the numerical estimate of the exponeri8+x)/(3

At the very beginning, the system is made of fractal blobs~D)=4.4+0.3 for the reaction-limited cluster-cluster aggre-
of typical size{~ Ry (see Sec. Il B.connected together in a gates, in whichD;=2.1 for the three-dimensional case. The
homogeneous network. Such a structure has clearly beewrlation(7) with a similar exponengwith a value 4—5% was
found experimentally in the formation of a solid gel network also proposed with slightly different variatiofi20].

[15]. When pressure is applied, the system rearranges irre-
versibly and the initial fractal blobs decrease in size as a D. Ruptures
consequence of local reorganization. . ) ) .

For the response to a stress, percolation is the appropriate At @ sufficient high pressure, bonds will start breaking,
description, since the mechanical resistance to collapse orighd the aggregates will no longer respond as an elastic sys-
nates from a few paths made of bound particles, which spaff™: Local rearrangements will cause the fractal structure to

the top to the bottom of the system. These paths are forme\‘f‘niSh rapidly. Since the volume fraction is now significantly

as an assembly of blob backbones. These particular sufigher than for the initial structuresay, about twice higher,

systems will be called the mechanically resistant column®’ MOre. the initial fractal morphology has disappeared and
(see Fig. 7. Since, for the mechanical response, two parallePn€ has to deal with a mechanical system equivalent to a
independent columns are equivalent to one with double Stiﬁ_smgle.resstant column: the backbone of the percolation path
ness, we shall consider the case where there is only one sughanning from the top to the bottom of the overall system.

resistant column, the actual number of colunib§] being a Ihg densitye of elastic energy stored in a column &
numerical factor in the effective stiffness. =P4/K,, whereK, coincides with the elastic modulus of the

whole system. This densiycorresponds to the deformation
energy per unit volume.
B. Stiff behavior From a mechanical point of view, only the minimal path
When the pressure is such tHatP,<1, the system is crossing the backbone from top to bottom is relevant, since
approximate|y e|astiC, as all relative disp|acements of parthe |OOpS renormalize the local stiffness thrOUghOUt the path
ticles remain quite small. For very small pressures, noncenlhis minimal path is then a self-avoiding walk. Two behav-
tral forces make the system rigid, preventing parts of thdors are possible.
system from buckling[17]. Such a rigidity lasts until the

pressure forces are strong enough to buckle the structure. 1. Plastic behavior
Formally: The first behavior occurs when the elastic energy is dis-
b=y, whenP <P, 6) tributed uniformly along the resistant column of heigdtt

Rupture will occur if the applied pressure is larger than the
In fact, the constrainP <P, is probably not so strict, and thresholdP,,, for which e=w,, with w, the average energy
should be read aB/P,<A, with the constanA of order 1. needed to break up all the bonds linking two neighboring
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In P/P0 cussed in Sec. Il Ca the radius of one particle. At the de-
nominator, N, is the number of particles involved in the
minimal chain throughout a percolating system. The scaling
N, = H%min has been proposed with the numerical vadig,
=1.4 for the three-dimensional spaf@?]. The distancer
was argued to follow a simple power-la, «<H¢, with €

=1 for the isotropic chain$l4]. This leads to the depen-
dence:

8 . .
slope: 1.7

K, o« ¢25+dmin.

Therefore, one obtains the scaling relation:

P;Iam ¢E+dmin/2_ (8)
The proportionality constant depends, in particular, on the
value of Ey.

This formula needs an interpretation in terms of the cur-
rent pressur®. This can be done by the following argument
-3 -2 -1 ;,\4,.64 0 [3]. After a series of breakages, there is a collection of col-

In o umns with all possible heights between 1 atdWhen the
external pressure reaches the threstld(¢) correspond-

FIG. 8. A double-logarithmic plot of the reduced presski®,  ing to the actual volume fraction through E@), then the
vs the volume fractiomp, for various values of the disruptive energy resistant column of heightl breaks into two or more frag-
Eg. Triangles are folEy/E,=4, circles forEy/Ey,=9, and stars for ments, and the volume fractios#h increases by the elastic
various values o4/ E, ranging from 360 up to 10 000. A dashed deformation of the next resistant column. As this process
line is used for the smallest values Bf; presented hereEy/E, goes on, the system passes successively through a series of
=0.04, which exhibits discontinuous jump i from about 102 to discrete stateBP;|a(</>) ,¢]. Between two consecutive states,
texy. Full straight linegcorresponding to power-law behavipese  through plastic deformation. But this transformation is not
the predictiong7) and (9) of the theoretical model. recorded, since only the equilibriium states are considered. If

the disordered system is large enough, the s[&f?gg(d;) oy
particles of the columii21]. Sincew,~nEy/a? is indepen-  are close to each other, and the behavior
dent on the volume fractiogy, one deduces the threshold:

Pl VK. P ox ¢p€¥din 2 9
The formula derived by Kantor and Webman for the ef-is ihen expected, with the numerical exponesitd, /2
fective stiffness of a disordered column[is3] ~1.7 in the three-dimensional space.
nka

;= W' 2. Fragile behavior
P The other behavior that involves column breakup, is that
where n is the average number of springs between twoin which the deformation energy is localized into a small

neighboring particlesk is the stiffness of one bond, as dis- domain of the resistant chain. Then, the morphology of the

P/P, PP,
1000 T -
L 2
100 ¢ i
10 + o8 3
w» O
< ©
1 o0 <
0.1 £ 1000
¢ N, /N

FIG. 9. The evolution of the breakage rate per partijgN (right-hand figurg versus the pressure/P,, for three samples with
Eq4/Ey=9. The scale is linear iN,/N, and logarithmic in pressure and volume fraction. The two horizontal lines visualize the boundaries of
the plastic domain. The bold line is the slope 1.7.
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P/P, In(P/Po )
2000 : 10
8 L
A
6 L
1000 |+ . P S i 4t
g 2
8 6 0
e * o0 -l ln((')x— (|))
AR >2 o FIG. 11. Double-logarthmic plot oP/Py¢'” vs ¢"—¢. The
0 R LI . same data and the same symbols as for Fig. 8 are used. The lines of
0.55 0.65 slope —1/2 could indicate the Van der Waals behagl® near the
¢ complete compact structure. The accumulated points in the right-

hand sidgclose to If¢" - ¢) ~—0.45 correspond to the small vol-
FIG. 10. A close view(domain: 0.55< ¢<<0.75 of the final  ,me fractions.

compaction stages of tHevs ¢ curve in the double-linear plot, for

all the numerical simulations performed in the current wakues A. Numerical results
of E4/E, ranging from 0.04 to 10000The vertical solid line cor- The main results of the present work are shown in Fig. 8.
responds tap =0.64. This is a double-logarithmic plot for the external pressure

versus the volume fraction of the particles. Several sets of
column does not matter, except in the vicinity of the stressedlata are represented, all of them obtained from numerical
domain. The local breakage equation wri@%a3zwo, de- simulations of systems withl=500 particlesn,=200 pins
fining the pressure threshoR}, . Sincew, is independent of ~ per particle, and,=l,. Four sets of values df, were used,
the volume fractionp, one concludes that this also applies tonamely, E4/E,=0.04, Ey/E =4, Ey4/E,=9, and Ey/E,
the pressure threshold. The expected behavior is quite diffe=360—10000. The various behaviors are discussed and ex-
ent than previously: when pressure reaches the critical valuglained in the subsequent sections.
Pfa the system undergoes a series of breakups as in an B. Stiff behavior
avalanche, until the density becomes large enough to resist ] o i
through lateral constraints. This will produce a discontinuity ~ This behavior is not really important for our purpose, and

in the curveP versus¢ at the valueP=P} .. Formally, it should correspond to the pressure domBitP, smaller
. than a constant independent By as explained in Sec. V B
Pxg¢® at P=Pj,. [see Eq.6)]. The results plotted in Fig. 8 indicate that the

stiff domain is well represented B9/ P, <A, with A=7 for
all values ofEg.

E. Complete collapse C. Elastic behavior

The bonds cannot resist the pressure forces whenever the 115 pehavior can be seen only when the bonds cannot
pressure is larger than the threshBig, calculated in Eq(S).  preak so easily, ie., for the large values of the disruptive
Therefore, beyondP, the system should be a compact ar- energyE,. In Fig. 8, for E4/E,> 360 (stary, the power-law
rangement of hard spheres. Because of the local randomnegs, 4** shows up over one decade in pressure. It corre-
of the springs, one can expect _the random C_Iose-packmgpondS precisely to the formuld7), when 1<P/P,
model to be the final structur23)] if the system is able 10 <g /£ The remarkable feature of this part of Fig. 8 is that
overcome arch formatiotas occurring in dry granular ma- e detailed constitutive equatiqmith all its parameters,

teria). We infer and domain of validity is fairly independent on the relative

— g* * disruptive energyey/E,, as long as its value is larger than
=¢, when P> Py, d’ =o ;
. ¢=¢ dis some thresholdhere, larger than~100. This probably
with ¢ =0.64[24]. means that, in agreement with the theoretical argument of

Brown and Ball[19], the full equation is essentially a func-

tion of the value of the local stiffnessof a spring, and of the
VI. NUMERICAL SIMULATIONS morphology of the blobs.

A code was written irfFortran9q and numerical simulations D. Dissipative behaviors
performed on a 2.8 GHz biprocessor workstation. Typically, _ )
20-50 CPU hours are needed for complete compaction of a 1. Plastic behavior
system of 500 particles. Expect about one week [for As explained in Sec. V D, the plastic behavior is charac-
~1000. terized by a series of breakages in a whole domain of pres-
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sure. The theoretical feature is E@@), which is precisely PIP, o« ¢V N — &, (10)
recovered in the numerical data of Fig. 8 as straight lines ) o .
with slope 1.7. It is worth remarking that the same power-for all the data where the plastic behavior is cleae.,
law equation fits well the data for different values of the 1<Eq4/Eo<100). This formula is just indicative considering
disruptive energy, with a prefactor that increases viigh ~ the small number of reliable points involved.
This suggests a common scenario yielding this behavior, as
the one proposed in Sec. VD 1.

The role of the bond breakups is exemplified in Fig. 9, VII. CONCLUSION

where it is seen that the pressure domain where plastic be- Thea aim of this work was to determine the laws for the

havior occurs corresponds to a strong enhancement of thg ssistatic compression of dissipative networks, made of ag-
breakage ratéhere counted alsy, the total number of bonds  greqated particles that interact through noncentral forces. A
broken between a given pressure and the previous equillgde| was constructed, which describes interparticle forces
brated pressuje as breakable harmonic springs attached to the particle sur-
faces. The fundamental parameter of this model is the dis-
ruptive energykEy needed to break one bond.

For E4/E,=0.04, the bonds are so weak that the system Numerical simulations of this model show a discrete set
cannot resist any pressure larger than a small threshold. Thi compressional responses that are independent of initial
is basically a two-state system with no definite intermediateconditions. Systems with low disruptive energigsrespond
stable configuration in between the low-density initial statewith a plastic behavior, where large numbers of bonds are

2. Fragile behavior

and the final compact state. broken and created. Systems with higher disruptive energies
respond with an elastic behavior, where most bonds are per-
E. Collapse manent. The scalings of pressure versus the volume fraction

of particles in these two regimes can be understood through
some general theoretical arguments. Finally, the numerical
simulations also show that these scenarios converge, at very
large applied pressures, to the random close packing of
spheres.

This work may have practical uses in material sciences,
the design and the control of materials containing colloi-
dal aggregates, such as ceramic pastes and flocculated emul-
sions. Indeed, the compressional properties of such materials

The average value of the limit value is found equal tc)are known from experiments that apply an osmotic stress,
& =0.643 wr?ich is in close aareement with the va(lque eX_such as ultrafiltration, centrifugation, dialysis, or drying.

e gre: There is strong evidence that the experimental laws are
pected for the random close packing of sphd2.

This is a remarkable result in the sense that it shows tha(ﬂua“tatlvely similar to those predicted here. Typical ex-

presence of bonds between the particles forbids voids Iargr—f?lrmpIes can be found in Ref27] for compaction of dry

than those expected in the random close packing. One ¢ coIIoi.daI silica, and Ref:[ZO] for polystyrene or colloidal
say that springs here act as a lubricant, leading to. a syste umina gels. Aquanytatlve match of these laws would mak_e
definitely different from the dry granular r’nedium at the samem poss.|ble to determlng the parameters that charactenze.m-
. terparticle forces, principally the bond strengths and the dis-
(i.e., here zerptemperature. In the latter system, the pres-

ence of arches and bridges may prevent the system fro ruptiv_e e_nergies. Conversely, it is now possil_)Ie_ to pred_ict
reaching the random close-packing StE26] ra'uantltanvely the consequences _of changes in m'Ferpartche
) . forces for the mechanical properties of such materials.
Close to the compact structure, compression should be

dominated by the excluded volume effects. A tentative for-
mula to describe the approach to the random close-packing
result can be proposed here. Plotting the same data as in Fig.
8, but with the variablegP/P,)/¢'" versus ¢ — ¢, with This work was supported by the French Ministere de la
¢ =0.643, in the double-logarithmic plot, one obtains Fig.Recherche Scientifique, through the ACI Interface “Eau et
11. This plot exhibits a behavior, close # —¢$=0, that Environnement.” The authors thank Martine Meireles and
resembles the Van der Waals equati{@n but in the modi- Pierre Aimar for stimulating discussions and valuable com-
fied form: ments.

All the numerical simulations tend to the finite volume
fraction ¢" ~0.64 of the random close-packing model, when
the applied pressure is very high. This is seen in Fig. 10
which corresponds to the linear plot of all our data for which
a limit value of ¢ was detectedthe same data as Fig. 8 and
other ones corresponding to various choices for the disrupf—Or
tive energy, the numbeX of particles and the numbes;, of
pins per particlg Only the domain 0.55 ¢<0.7 is shown
in order to clearly see the behavior.
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